Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing
نویسندگان
چکیده
Pseudomonas aeruginosa possesses at least three well-defined quorum-sensing (QS) (las, rhl and pqs) systems that control a variety of important functions including virulence. RsaL is a QS repressor that reduces QS signal production and ensures homeostasis by functioning in opposition to LasR. However, its regulatory role in signal homeostasis remains elusive. Here, we conducted a ChIP-seq assay and revealed that RsaL bound to two new targets, the intergenic regions of PA2228/PA2229 and pqsH/cdpR, which are required for PQS synthesis. Deletion of rsaL reduced transcription of pqsH and cdpR, thus decreasing PQS signal production. The ΔrsaL strain exhibited increased pyocyanin production and reduced biofilm formation, which are dependent on CdpR or PqsH activity. In addition, we solved the structure of the RsaL-DNA complex at a 2.4 Å resolution. Although the overall sequence similarity is quite low, RsaL folds into a HTH-like structure, which is conserved among many transcriptional regulators. Complementation results of the rsaL knockout cells with different rsaL mutants further confirmed the critical role of the DNA-binding residues (including Arg20, Gln27, Gln38, Gly35, Ser37 and Ser42) that are essential for DNA binding. Our findings reveal new targets of RsaL and provide insight into the detailed characterization of the RsaL-DNA interaction.
منابع مشابه
The quorum-sensing negative regulator RsaL of Pseudomonas aeruginosa binds to the lasI promoter.
A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the La...
متن کاملThe Pseudomonas quorum-sensing regulator RsaL belongs to the tetrahelical superclass of H-T-H proteins.
In the opportunistic human pathogen Pseudomonas aeruginosa, quorum sensing (QS) is crucial for virulence. The RsaL protein directly represses the transcription of lasI, the synthase gene of the main QS signal molecule. On the basis of sequence homology, RsaL cannot be predicted to belong to any class of characterized DNA-binding proteins. In this study, an in silico model of the RsaL structure ...
متن کاملRegulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA.
Quorum sensing is a cell population-density dependent regulatory system which in gram-negative bacteria often involves the production and detection of N-acyl homoserine lactones (AHLs). Some Pseudomonas putida strains have been reported to produce AHLs, and one quorum-sensing locus has been identified. However, it appears that the majority of strains do not produce AHLs. In this study we report...
متن کاملContributionoftheRsaLglobal regulator toPseudomonas aeruginosa virulenceand bio¢lmformation
In Pseudomonas aeruginosa, acyl-homoserine-lactone quorum sensing (acyl-HSL QS) regulates the expression of virulence factors and biofilm formation in response to cell density. The RsaL protein represses transcription of the lasI gene, encoding the 3OC12-HSL signal synthase. The level of 3OC12-HSL is 10-fold higher in an rsaL mutant than in the wild type. In this work, we studied the effect of ...
متن کاملPromoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes.
The LasR-dependent and RhlR-dependent quorum-sensing systems are global regulators of gene expression in Pseudomonas aeruginosa. Previous studies have demonstrated that promoter elements of the quorum-sensing-controlled genes lasB and hcnABC are important in density-dependent regulation. We have identified LasR- and RhlR-dependent determinants in promoters of quorum-sensing-controlled genes qsc...
متن کامل